- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Filipe (2)
-
Arkin, Adam P (1)
-
Arkin, Adam_P (1)
-
Baliga, Nitin_S (1)
-
Beber, Moritz E (1)
-
Best, Aaron A (1)
-
Bolton, Jay R (1)
-
Canon, Shane (1)
-
Carr, Alex_V (1)
-
Chen, Yan (1)
-
Chia, Nicholas (1)
-
Cottingham, Robert W (1)
-
DeJongh, Matthew (1)
-
D’haeseleer, Patrik (1)
-
Edirisinghe, Janaka N (1)
-
Edirisinghe, Janaka_N (1)
-
Faria, José P (1)
-
Faria, José_P (1)
-
Henry, Christopher S (1)
-
Henry, Christopher_S (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Anthropogenic perturbations to the nitrogen cycle, primarily through use of synthetic fertilizers, is driving an unprecedented increase in the emission of nitrous oxide (N2O), a potent greenhouse gas and an ozone depleting substance, causing urgency in identifying the sources and sinks of N2O. Microbial denitrification is a primary contributor to biotic production of N2O in anoxic regions of soil, marine systems, and wastewater treatment facilities. Here, through comprehensive genome analysis, we show that pathway partitioning is a ubiquitous mechanism of complete denitrification within microbial communities. We have investigated mechanisms and consequences of process partitioning of denitrification through detailed physiological characterization and kinetic modeling of a synthetic community of Rhodanobacter thiooxydans FW510-R12 and Acidovorax sp. GW101-3H11. We have discovered that these two bacterial isolates, from a heavily nitrate (NO3−) contaminated superfund site, complete denitrification through the exchange of nitrite (NO2−) and nitric oxide (NO). The process partitioning of denitrification and other processes, including amino acid metabolism, contribute to increased cooperativity within this denitrifying community. We demonstrate that certain contexts, such as high NO3−, cause unbalanced growth of community members, due to differences in their substrate utilization kinetics. The altered growth characteristics of community members drives accumulation of toxic NO2−, which disrupts denitrification causing N2O off gassing.more » « less
-
Seaver, Samuel M; Liu, Filipe; Zhang, Qizhi; Jeffryes, James; Faria, José P; Edirisinghe, Janaka N; Mundy, Michael; Chia, Nicholas; Noor, Elad; Beber, Moritz E; et al (, Nucleic Acids Research)Abstract For over 10 years, ModelSEED has been a primary resource for the construction of draft genome-scale metabolic models based on annotated microbial or plant genomes. Now being released, the biochemistry database serves as the foundation of biochemical data underlying ModelSEED and KBase. The biochemistry database embodies several properties that, taken together, distinguish it from other published biochemistry resources by: (i) including compartmentalization, transport reactions, charged molecules and proton balancing on reactions; (ii) being extensible by the user community, with all data stored in GitHub; and (iii) design as a biochemical ‘Rosetta Stone’ to facilitate comparison and integration of annotations from many different tools and databases. The database was constructed by combining chemical data from many resources, applying standard transformations, identifying redundancies and computing thermodynamic properties. The ModelSEED biochemistry is continually tested using flux balance analysis to ensure the biochemical network is modeling-ready and capable of simulating diverse phenotypes. Ontologies can be designed to aid in comparing and reconciling metabolic reconstructions that differ in how they represent various metabolic pathways. ModelSEED now includes 33,978 compounds and 36,645 reactions, available as a set of extensible files on GitHub, and available to search at https://modelseed.org/biochem and KBase.more » « less
An official website of the United States government
